114 research outputs found

    Delayed priming promotes CNS regeneration post-rhizotomy in Neurocan and Brevican-deficient mice

    Get PDF
    A wealth of literature has provided evidence that reactive tissue at the site of CNS injury is rich in chondroitin sulfate proteoglycans which may contribute to the non-permissive nature of the CNS. We have recently demonstrated using a murine model of human brachial plexus injury that the chondroitin sulfate proteoglycans Neurocan and Brevican are differentially expressed by two subsets of astrocytes in the spinal cord dorsal root entry zone (DREZ) following dorsal root lesion (Beggah et al., Neuroscience 133: 749-762, 2005). However, direct evidence for a growth-inhibitory role of these proteoglycans in vivo is still lacking. We therefore performed dorsal root lesion (rhizotomy) in mice deficient in both Neurocan and Brevican. Rhizotomy in these animals resulted in no significant increase in the number of sensory fibres regenerating through the DREZ compared to genetically matched controls. Likewise, a conditioning peripheral nerve lesion prior to rhizotomy, which increases the intrinsic growth capacity of sensory neurons, enhanced growth to the same extent in transgenic and control mice, indicating that absence of these proteoglycans alone is not sufficient to further promote entry into the spinal cord. In contrast, when priming of the median nerve was performed at a clinically relevant time, i.e. 7 weeks post-rhizotomy, the growth of a subpopulation of sensory axons across the DREZ was facilitated in Neurocan/Brevican-deficient, but not in control animals. This demonstrates for the first time that (i) Neurocan and/or Brevican contribute to the non-permissive environment of the DREZ several weeks after lesion and that (ii) delayed stimulation of the growth program of sensory neurons can facilitate regeneration across the DREZ provided its growth-inhibitory properties are attenuated. Post-injury enhancement of the intrinsic growth capacity of sensory neurons combined with removal of inhibitory chondroitin sulfate proteoglycans may therefore help to restore sensory function and thus attenuate the chronic pain resulting from human brachial plexus injur

    Neurocan genome-wide psychiatric risk variant affects explicit memory performance and hippocampal function in healthy humans

    Get PDF
    Alterations of the brain extracellular matrix (ECM) can perturb the structure and function of brain networks like the hippocampus, a key region in human memory that is commonly affected in psychiatric disorders. Here, we investigated the potential effects of a genome‐wide psychiatric risk variant in the NCAN gene encoding the ECM proteoglycan neurocan (rs1064395) on memory performance, hippocampal function and cortical morphology in young, healthy volunteers. We assessed verbal memory performance in two cohorts (N = 572, 302) and found reduced recall performance in risk allele (A) carriers across both cohorts. In 117 participants, we performed functional magnetic resonance imaging using a novelty‐encoding task with visual scenes. Risk allele carriers showed higher false alarm rates during recognition, accompanied by inefficiently increased left hippocampal activation. To assess effects of rs1064395 on brain morphology, we performed voxel‐based morphometry in 420 participants from four independent cohorts and found lower grey matter density in the ventrolateral and rostral prefrontal cortex of risk allele carriers. In silico eQTL analysis revealed that rs1064395 SNP is linked not only to increased prefrontal expression of the NCAN gene itself, but also of the neighbouring HAPLN4 gene, suggesting a more complex effect of the SNP on ECM composition. Our results suggest that the NCAN rs1064395 A allele is associated with lower hippocampus‐dependent memory function, variation of prefrontal cortex structure and ECM composition. Considering the well‐documented hippocampal and prefrontal dysfunction in bipolar disorder and schizophrenia, our results may reflect an intermediate phenotype by which NCAN rs1064395 contributes to disease risk

    Patterns of Coupled Theta Activity in Amygdala-Hippocampal-Prefrontal Cortical Circuits during Fear Extinction

    Get PDF
    Signals related to fear memory and extinction are processed within brain pathways involving the lateral amygdala (LA) for formation of aversive stimulus associations, the CA1 area of the hippocampus for context-dependent modulation of these associations, and the infralimbic region of the medial prefrontal cortex (mPFC) for extinction processes. While many studies have addressed the contribution of each of these modules individually, little is known about their interactions and how they function as an integrated system. Here we show, by combining multiple site local field potential (LFP) and unit recordings in freely behaving mice in a fear conditioning paradigm, that theta oscillations may provide a means for temporally and functionally connecting these modules. Theta oscillations occurred with high specificity in the CA1-LA-mPFC network. Theta coupling increased between all areas during retrieval of conditioned fear, and declined during extinction learning. During extinction recall, theta coupling partly rebounded in LA-mPFC and CA1-mPFC, and remained at a low level in CA1-LA. Interfering with theta coupling through local electrical microstimulation in CA1-LA affected conditioned fear and extinction recall depending on theta phase. These results support the hypothesis that theta coupling provides a means for inter-areal coordination in conditioned behavioral responsiveness. More specifically, theta oscillations seem to contribute to a population code indicating conditioned stimuli during recall of fear memory before and after extinction

    Optogenetic stimulation of a hippocampal engram activates fear memory recall

    Get PDF
    A specific memory is thought to be encoded by a sparse population of neurons. These neurons can be tagged during learning for subsequent identification3 and manipulation. Moreover, their ablation or inactivation results in reduced memory expression, suggesting their necessity in mnemonic processes. However, the question of sufficiency remains: it is unclear whether it is possible to elicit the behavioural output of a specific memory by directly activating a population of neurons that was active during learning. Here we show in mice that optogenetic reactivation of hippocampal neurons activated during fear conditioning is sufficient to induce freezing behaviour. We labelled a population of hippocampal dentate gyrus neurons activated during fear learning with channelrhodopsin-2 (ChR2) and later optically reactivated these neurons in a different context. The mice showed increased freezing only upon light stimulation, indicating light-induced fear memory recall. This freezing was not detected in non-fear-conditioned mice expressing ChR2 in a similar proportion of cells, nor in fear-conditioned mice with cells labelled by enhanced yellow fluorescent protein instead of ChR2. Finally, activation of cells labelled in a context not associated with fear did not evoke freezing in mice that were previously fear conditioned in a different context, suggesting that light-induced fear memory recall is context specific. Together, our findings indicate that activating a sparse but specific ensemble of hippocampal neurons that contribute to a memory engram is sufficient for the recall of that memory. Moreover, our experimental approach offers a general method of mapping cellular populations bearing memory engrams.RIKEN Brain Science InstituteNational Institutes of Health (U.S.) (Grant R01-MH078821)National Institutes of Health (U.S.) (Grant P50-MH58880

    Neuropeptide S-Mediated Facilitation of Synaptic Transmission Enforces Subthreshold Theta Oscillations within the Lateral Amygdala

    Get PDF
    The neuropeptide S (NPS) receptor system modulates neuronal circuit activity in the amygdala in conjunction with fear, anxiety and the expression and extinction of previously acquired fear memories. Using in vitro brain slice preparations of transgenic GAD67-GFP (Δneo) mice, we investigated the effects of NPS on neural activity in the lateral amygdala as a key region for the formation and extinction of fear memories. We are able to demonstrate that NPS augments excitatory glutamatergic synaptic input onto both projection neurons and interneurons of the lateral amygdala, resulting in enhanced spike activity of both types of cells. These effects were at least in part mediated by presynaptic mechanisms. In turn, inhibition of projection neurons by local interneurons was augmented by NPS, and subthreshold oscillations were strengthened, leading to their shift into the theta frequency range. These data suggest that the multifaceted effects of NPS on amygdaloid circuitry may shape behavior-related network activity patterns in the amygdala and reflect the peptide's potent activity in various forms of affective behavior and emotional memory

    Persistent Hyperdopaminergia Decreases the Peak Frequency of Hippocampal Theta Oscillations during Quiet Waking and REM Sleep

    Get PDF
    Long-term changes in dopaminergic signaling are thought to underlie the pathophysiology of a number of psychiatric disorders. Several conditions are associated with cognitive deficits such as disturbances in attention processes and learning and memory, suggesting that persistent changes in dopaminergic signaling may alter neural mechanisms underlying these processes. Dopamine transporter knockout (DAT-KO) mice exhibit a persistent five-fold increase in extracellular dopamine levels. Here, we demonstrate that DAT-KO mice display lower hippocampal theta oscillation frequencies during baseline periods of waking and rapid-eye movement sleep. These altered theta oscillations are not reversed via treatment with the antidopaminergic agent haloperidol. Thus, we propose that persistent hyperdopaminergia, together with secondary alterations in other neuromodulatory systems, results in lower frequency activity in neural systems responsible for various cognitive processes

    Kainate Receptor-Mediated Modulation of Hippocampal Fast Spiking Interneurons in a Rat Model of Schizophrenia

    Get PDF
    Kainate receptor (KAR) subunits are believed to be involved in abnormal GABAergic neurotransmission in the hippocampus (HIPP) in schizophrenia (SZ) and bipolar disorder. Postmortem studies have shown changes in the expression of the GluR5/6 subunits of KARs in the stratum oriens (SO) of sectors CA2/3, where the basolateral amygdala (BLA) sends a robust projection. Previous work using a rat model of SZ demonstrated that BLA activation leads to electrophysiological changes in fast-spiking interneurons in SO of CA2/3. The present study explores KAR modulation of interneurons in CA2/3 in response to BLA activation. Intrinsic firing properties of these interneurons through KAR-mediated activity were measured with patch-clamp recordings from rats that received 15 days of picrotoxin infusion into the BLA. Chronic BLA activation induced changes in the firing properties of CA2/3 interneurons associated with modifications in the function of KARs. Specifically, the responsiveness of these interneurons to activation of KARs was diminished in picrotoxin-treated rats, while the after-hyperpolarization (AHP) amplitude was increased. In addition, we tested blockers of KAR subunits which have been shown to have altered gene expression in SO sector CA2/3 of SZ subjects. The GluR5 antagonist UBP296 further decreased AP frequency and increased AHP amplitude in picrotoxin-treated rats. Application of the GluR6/7 antagonist NS102 suggested that activation of GluR6/7 KARs may be required to maintain the high firing rates in SO interneurons in the presence of KA. Moreover, the GluR6/7 KAR-mediated signaling may be suppressed in PICRO-treated rats. Our findings indicate that glutamatergic activity from the BLA may modulate the firing properties of CA2/3 interneurons through GluR5 and GluR6/7 KARs. These receptors are expressed in GABAergic interneurons and play a key role in the synchronization of gamma oscillations. Modulation of interneuronal activity through KARs in response to amygdala activation may lead to abnormal oscillatory rhythms reported in SZ subjects

    Human Stiff-Person Syndrome IgG Induces Anxious Behavior in Rats

    Get PDF
    Background: Anxiety is a heterogeneous behavioral domain playing a role in a variety of neuropsychiatric diseases. While anxiety is the cardinal symptom in disorders such as panic disorder, co-morbid anxious behavior can occur in a variety of diseases. Stiff person syndrome (SPS) is a CNS disorder characterized by increased muscle tone and prominent agoraphobia and anxiety. Most patients have high-titer antibodies against glutamate decarboxylase (GAD) 65. The pathogenic role of these autoantibodies is unclear. Methodology/Principal Findings: We re-investigated a 53 year old woman with SPS and profound anxiety for GABA-A receptor binding in the amygdala with (11)C-flumazenil PET scan and studied the potential pathogenic role of purified IgG from her plasma filtrates containing high-titer antibodies against GAD 65. We passively transferred the IgG fraction intrathecally into rats and analyzed the effects using behavioral and in vivo electrophysiological methods. In cell culture, we measured the effect of patient IgG on GABA release from hippocampal neurons. Repetitive intrathecal application of purified patient IgG in rats resulted in an anxious phenotype resembling the core symptoms of the patient. Patient IgG selectively bound to rat amygdala, hippocampus, and frontal cortical areas. In cultured rat hippocampal neurons, patient IgG inhibited GABA release. In line with these experimental results, the GABA-A receptor binding potential was reduced in the patient’s amygdala/hippocampus complex. No motor abnormalities were found in recipient rats. Conclusion/Significance: The observations in rats after passive transfer lead us to propose that anxiety-like behavior can be induced in rats by passive transfer of IgG from a SPS patient positive for anti-GAD 65 antibodies. Anxiety, in this case, thus may be an antibody-mediated phenomenon with consecutive disturbance of GABAergic signaling in the amygdala region
    corecore